< Previous - Table of Contents - Next >

Chapter 2 -  THE EQUATIONS
 

THE BASIC EQUATION

  Although  the  equations  describing  the  operation of  the  vacuum  tube
are derived in many text books, the derivation  is  repeated  here  so  that
a form more suitable  for  use  with  G-Curves  can  be  shown.  With  these
equations and the  G-Curves,  the  performance  of  a  vacuum  tube  in  its
circuit may be calculated at any point within the operating area.

  The total instantaneous value  of  the  plate  current  in  a  tube  is  a
function of the tube parameters and can be expressed as:

                     ib = f ( eb, ec1, ec2, . . . )

  The  unspecified  parameters are  functions  of such  things  as  filament
voltage,  tube  geometry,  temperature,  and  many  other  factors.  Holding
the unspecified  parameters  constant,  a  series  expansion  of  the  above
equation in terms of partial derivatives of ‘f ‘ can  be  written. These par-
tial derivatives  are  the  commonly  used  conductance  parameters  in  the
following equation:

                ip = ( gm1* eg1 ) + ( gm2* eg2 ) + . . . + ( gp* ep )                 (3)

where the g's are the values of the partial derivatives.  This is  the  basic
equation from which  equations  for  use  with  the  G-Curve  technique  are
derived.  For triodes, it reduces to:

                         ip = ( gm* eg ) + ( gp* ep )                                  (4)
 

RESISTANCE-COUPLED AMPLIFIER EQUATIONS

  The triode R-C amplifier circuit is shown in  Fig. 2-1.  For  the  present
analysis Rk1 may be assumed equal to  zero,  or  a  short  circuit.  Because
supply voltage Ebb is  constant,  plate  voltage  change  ep  is  equal  but
opposite in polarity to the output voltage change, i.e. :

                          ep = -eL = -ip* RL

  Using this to eliminate ip from Equation 4 gives:

                          ep = ( -gm* RL* eg ) / [ 1 + ( gp* RL )]

  and the equation for amplification follows  immediately:

                      K =  ep / eg  = ( -gm* RL ) / [1 + ( gp* RL )]               (5)
 
 
 
 
 
 

6
 
 

< Previous - Table of Contents - Next >

Copyright 2008 for Phyllis K. Pullen, M.D.,
by Robert J. Legg