Example: Two Endpoint-Independent Mapping, Address-Dependent Filtering NATs

[See ReadMe document for notation and conventions used]

L and R are behind two different NATs (labeled NL and NR respectively). Each NAT is [BEHAVE-UDP] compliant, but has the addressdependent filtering property. L and R both use a public STUN server, but this server does not support the STUN Relay usage (= no TURN).
The candidates offered by L and R are:

$$
\begin{array}{ll}
\mathrm{L}_{1}-\mathrm{A} \text { local candidate; } \mathrm{q}=1 & \mathrm{R}_{1}-\mathrm{A} \text { local candidate; } \mathrm{q}=1 \\
\mathrm{~L}_{2}-\mathrm{A} \text { server-reflexive candidate; } \mathrm{q}=0.7 & \mathrm{R}_{2}-\mathrm{A} \text { server-reflexive candidate; } \mathrm{q}=0.7
\end{array}
$$

In this example, L and R choose L_{2} and R_{2} respectively as the initially active candidates. Thus ($L 2, R 2$) is the first pair in the [ICE-08] check ordering. In [Elim-Dups], there are no Tx candidate pairs that directly correspond to (L2, R2), since neither candidate is a base candidate, but this pair is equivalent to the checks $\left(\mathrm{L}_{1} \rightarrow \mathrm{R}_{2}\right)$ and $\left(\mathrm{L}_{2} \leftarrow \mathrm{R}_{1}\right)$ so these checks are done first in the [Elim-Dups] check ordering.
Note how [ICE-08] needs 8 checks (one in each direction for each of the 4 candidate pairs), while [Elim-Dups] needs only 4 checks (since [Elim-Dups] only does those checks that originate from a base candidate).

Label	ICE-08 candidate pairs and their check ordering		Tx pairs on L and their check ordering		Tx pairs on R and their check ordering	
A	($\mathrm{L}_{1}, \mathrm{R}_{1}$)	$2^{\text {nd }}$	$\mathrm{L}_{1} \rightarrow \mathrm{R}_{1}$	$2^{\text {nd }}$	$\mathrm{L}_{1} \leftarrow \mathrm{R}_{1}$	$2^{\text {nd }}$
B	$\left(\mathrm{L}_{1}, \mathrm{R}_{2}\right)$	$3^{\text {rd }}$	$\mathrm{L}_{1} \rightarrow \mathrm{R}_{2}$	$1^{\text {st }}$		
C	$\left(L_{2}, \mathrm{R}_{1}\right)$	$4^{\text {th }}$			$\mathrm{L}_{2} \leftarrow \mathrm{R}_{1}$	$1^{\text {st }}$
D	($\mathrm{L}_{2}, \mathrm{R}_{2}$)	$1^{\text {st }}$				

[ICE-08]

[Elim-Dups]

$\left.\begin{array}{|l|l|l|}\hline \text { Elapsed time } & \text { [ICE-08] Processing } & \text { [Elim-Dups] Processing } \\ \hline \mathrm{T}=0 & \begin{array}{l}\text { R begins by sending a Binding Request for check } \\ \text { D, which installs a filtering rule towards } L_{2} \text { in R's } \\ \text { NAT, but is dropped by L's NAT. }\end{array} & \begin{array}{l}\text { R begins by sending a Binding Request for check C } \\ \text { (which is equivalent to check D from R's perspective). } \\ \text { As in [ICE-08], this installs a filtering rule towards L2 in }\end{array} \\ & \begin{array}{l}\text { Shortly afterwards, L sends a Binding Request for } \\ \text { check D, which makes it to R. When the response } \\ \text { arrives back at L, L's state machine goes into the } \\ \text { Recv-Valid state and can start sending media. } \\ \text { The receipt of a Binding Request for check D } \\ \text { causes R to resend its own STUN Request for D, } \\ \text { which makes it through L's NAT this time. When but is dropped by L's NAT. } \\ \text { the response arrives back at R, R can also start } \\ \text { sending media. }\end{array} & \begin{array}{l}\text { Shortly afterwards, L sends a Binding Request for check } \\ \text { B (which is equivalent to check D from L's perspective). } \\ \text { This makes it to R, which replies. When the response } \\ \text { arrives back at L, L's Tx state machine goes Valid and } \\ \text { thus L can start sending media. } \\ \text { The receipt of a Binding Request for check B causes R to } \\ \text { resend the Binding Request for check C, since the source } \\ \text { and destination transport addresses in the received } \\ \text { Binding Request for B (when swapped) match check C. } \\ \text { When the response for C arrives back at R, R can also } \\ \text { start sending media. }\end{array} \\ \hline \mathrm{T}=50 & \begin{array}{l}\text { R and L both try check A, which fails because the } \\ \text { respective destination addresses are private. }\end{array} & \begin{array}{l}\text { R and L both try check A, which fails because the } \\ \text { respective destination addresses are private. } \\ \text { At this point, all checks have been tried once. Since there } \\ \text { is no re-offer, check A will continue to run until it }\end{array} \\ \text { reaches it retry limit. }\end{array}\right\}$

Using [ICE-08], L sends a total of 22 messages and R sends a total of 23 messages, giving 45 messages in all. Using [Elim-Dups], L sends a total of 11 messages and R sends a total of 12 messages, giving 23 messages in all. Thus [Elim-Dups] has only 51% of the messages of [ICE-08] in this example.
Both procedures discover a working path at approximately the same time.

