Example: Two Endpoint-Independent Mapping, Address-Dependent Filtering NATs

[See ReadMe document for notation and conventions used]

L and R are behind two different NATs (labeled NL and NR respectively). Each NAT is [BEHAVE-UDP] compliant, but has the addressdependent filtering property. L and R both use a public STUN server, but this server does not support the STUN Relay usage (= no TURN). The candidates offered by L and R are:

 $L_1 - A$ local candidate; q = 1

 $L_2 - A$ server-reflexive candidate; q = 0.7

 $R_1 - A$ local candidate; q = 1 $R_2 - A$ server-reflexive candidate; q = 0.7

In this example, L and R choose L₂ and R₂ respectively as the initially active candidates. Thus (L2, R2) is the first pair in the [ICE-08] check ordering. In [Elim-Dups], there are no Tx candidate pairs that directly correspond to (L2, R2), since neither candidate is a base candidate, but this pair is equivalent to the checks (L₁ \rightarrow R₂) and (L₂ \leftarrow R₁) so these checks are done first in the [Elim-Dups] check ordering.

Note how [ICE-08] needs 8 checks (one in each direction for each of the 4 candidate pairs), while [Elim-Dups] needs only 4 checks (since [Elim-Dups] only does those checks that originate from a base candidate).

Label	ICE-08 candidate pairs		Tx pairs on L and their		Tx pairs on R and their	
	and their check ordering		check ordering		check ordering	
А	(L_1, R_1) 2	nd	$L_1 \rightarrow R_1$	2^{nd}	$L_1 \leftarrow R_1$	2^{nd}
В	(L_1, R_2) 3	rd	$L_1 \rightarrow R_2$	1^{st}		
С	(L_2, R_1) 4	th			$L_2 \leftarrow R_1$	1^{st}
D	(L_2, R_2) 1	st				

Elapsed time	[ICE-08] Processing	[Elim-Dups] Processing		
T = 0	R begins by sending a Binding Request for check D, which installs a filtering rule towards L_2 in R's NAT, but is dropped by L's NAT. Shortly afterwards, L sends a Binding Request for	R begins by sending a Binding Request for check C (which is equivalent to check D from R's perspective). As in [ICE-08], this installs a filtering rule towards L ₂ in R's NAT, but is dropped by L's NAT. Shortly afterwards, L sends a Binding Request for check B (which is equivalent to check D from L's perspective). This makes it to R, which replies. When the response arrives back at L, L's Tx state machine goes Valid and thus L can start sending media.		
	check D, which makes it to R. When the response arrives back at L, L's state machine goes into the Recv-Valid state and can start sending media. The receipt of a Binding Request for check D causes R to resend its own STUN Request for D,			
	which makes it through L's NAT this time. When the response arrives back at R, R can also start sending media.	The receipt of a Binding Request for check B causes R to resend the Binding Request for check C, since the source and destination transport addresses in the received Binding Request for B (when swapped) match check C. When the response for C arrives back at R, R can also start sending media.		
T = 50	R and L both try check A, which fails because the respective destination addresses are private.	R and L both try check A, which fails because the respective destination addresses are private.		
		At this point, all checks have been tried once. Since there is no re-offer, check A will continue to run until it reaches it retry limit.		
T = 100	R tries check B, which fails.			
	L then tries check B, which succeeds in the $L \rightarrow R$ direction.			
T = 150	L and R try check C, which succeeds in the $L \leftarrow R$ direction, but fails in the $L \rightarrow R$ direction.			
	Both L and R also retry check A.			
	At this point, all checks have been tried once. Since there is no re-offer, checks A and C will continue to run until they reach their retry limits.			

Using [ICE-08], L sends a total of 22 messages and R sends a total of 23 messages, giving 45 messages in all. Using [Elim-Dups], L sends a total of 11 messages and R sends a total of 12 messages, giving 23 messages in all. Thus [Elim-Dups] has only 51% of the messages of [ICE-08] in this example. Both procedures discover a working path at approximately the same time.