
Example: Two Endpoint-Independent Mapping, Address-Dependent Filtering NATs
[See ReadMe document for notation and conventions used]

L

NAT NL NAT NR

R

STUN

L and R are behind two different NATs (labeled NL and NR respectively). Each NAT is [BEHAVE-UDP] compliant, but has the address-
dependent filtering property. L and R both use a public STUN server, but this server does not support the STUN Relay usage (= no TURN).
The candidates offered by L and R are:
 L1 – A local candidate; q = 1 R1 – A local candidate; q = 1
 L2 – A server-reflexive candidate; q = 0.7 R2 – A server-reflexive candidate; q = 0.7
In this example, L and R choose L2 and R2 respectively as the initially active candidates. Thus (L2, R2) is the first pair in the [ICE-08] check
ordering. In [Elim-Dups], there are no Tx candidate pairs that directly correspond to (L2, R2), since neither candidate is a base candidate,
but this pair is equivalent to the checks (L1  R2) and (L2  R1) so these checks are done first in the [Elim-Dups] check ordering.
Note how [ICE-08] needs 8 checks (one in each direction for each of the 4 candidate pairs), while [Elim-Dups] needs only 4 checks (since
[Elim-Dups] only does those checks that originate from a base candidate).

Label ICE-08 candidate pairs
and their check ordering

Tx pairs on L and their
check ordering

Tx pairs on R and their
check ordering

A (L1 , R1) 2nd L1  R1 2nd L1  R1 2nd
B (L1 , R2) 3rd L1  R2 1st
C (L2 , R1) 4th L2  R1 1st
D (L2 , R2) 1st

L NL NR R

Offer

Answer

C
B

Resp B

C

Resp C

A
A

T=0

T=50

T=0

T=50

A runs until

retry limit

reached

A runs until

retry limit

reached

L NL NR R

Offer

Answer

T=0 T=0

[Elim-Dups][ICE-08]

D
D

Resp D

D

Resp D

RTP

RTP

RTP

RTP

T=50T=50

A

A

T=100T=100 B
B

Resp B

T=150T=150 C
Resp C

C
A

A and C run until

retry limit reached

A and B run until

retry limit reached

A

Elapsed time [ICE-08] Processing [Elim-Dups] Processing
T = 0 R begins by sending a Binding Request for check

D, which installs a filtering rule towards L2 in R’s
NAT, but is dropped by L’s NAT.
Shortly afterwards, L sends a Binding Request for
check D, which makes it to R. When the response
arrives back at L, L’s state machine goes into the
Recv-Valid state and can start sending media.
The receipt of a Binding Request for check D
causes R to resend its own STUN Request for D,
which makes it through L’s NAT this time. When
the response arrives back at R, R can also start
sending media.

R begins by sending a Binding Request for check C
(which is equivalent to check D from R’s perspective).
As in [ICE-08], this installs a filtering rule towards L2 in
R’s NAT, but is dropped by L’s NAT.
Shortly afterwards, L sends a Binding Request for check
B (which is equivalent to check D from L’s perspective).
This makes it to R, which replies. When the response
arrives back at L, L’s Tx state machine goes Valid and
thus L can start sending media.
The receipt of a Binding Request for check B causes R to
resend the Binding Request for check C, since the source
and destination transport addresses in the received
Binding Request for B (when swapped) match check C.
When the response for C arrives back at R, R can also
start sending media.

T = 50 R and L both try check A, which fails because the
respective destination addresses are private.

R and L both try check A, which fails because the
respective destination addresses are private.
At this point, all checks have been tried once. Since there
is no re-offer, check A will continue to run until it
reaches it retry limit.

T = 100 R tries check B, which fails.
L then tries check B, which succeeds in the LR
direction.

T = 150 L and R try check C, which succeeds in the LR
direction, but fails in the LR direction.
Both L and R also retry check A.
At this point, all checks have been tried once.
Since there is no re-offer, checks A and C will
continue to run until they reach their retry limits.

Using [ICE-08], L sends a total of 22 messages and R sends a total of 23 messages, giving 45 messages in all.
Using [Elim-Dups], L sends a total of 11 messages and R sends a total of 12 messages, giving 23 messages in all.
Thus [Elim-Dups] has only 51% of the messages of [ICE-08] in this example.
Both procedures discover a working path at approximately the same time.

